極限是我們(men) 學習(xi) 微積分的重要基礎,今天帶大家學習(xi) 一個(ge) 簡單的概念 — End behavior of polynomials。
首先,來學習(xi) 一下詞匯:
polynomial 多項式
the degree of polynomial多項式的次數
function函數
linear function 一次函數:is of the first degree
quadratic function 二次函數:has degree 2
cubic function 三次函數:has degree 3
constant 常數
coefficient 係數
infinite 無窮
even 偶數
odd 奇數
什麽(me) 是polynomial function?
A polynomial function of degree n can be written in the form:
,
那麽(me) ,什麽(me) 是End behavior呢?我們(men) 可以理解為(wei) “終端趨勢”,End behavior of polynomials即當x趨向於(yu) 正/負無窮時(positively or negatively infinite),多項式(polynomial)所趨向的值。
先說結論:
Every polynomial whose degree is greater than or equal to 1 becomes infinite (positively or negatively) as x does, depending on the sign of the leading coefficient and the degree of the polynomial.
接下來我們(men) 結合圖像來理解:
1.Quadratic function 二次函數
由圖像可知,當a(leading coefficient)大於(yu) 0時,
x → +∞,y → +∞
x → -∞,y → +∞
當a(leading coefficient)小於(yu) 0時,
x → +∞,y → -∞
x → -∞,y → -∞
2.Cubic function 三次函數
當a(leading coefficient)大於(yu) 0時,
x → +∞,y → +∞
x → -∞,y → -∞
當a(leading coefficient)小於(yu) 0時,
x → +∞,y → -∞
x → -∞,y → +∞
3.Quartic function四次函數
當a(leading coefficient)大於(yu) 0時,
x → +∞,y → +∞
x → -∞,y → +∞
當a(leading coefficient)小於(yu) 0時,
x → +∞,y → -∞
x → -∞,y → -∞
以上我們(men) 不難看出(大家感興(xing) 趣可以畫一下五次函數的圖像),多項式次數(the degree of polynomial) 的奇偶性和首項係數(leading coefficient)的正負決(jue) 定了函數圖像的終端趨勢,我們(men) 可以歸類為(wei) :
1.If the degree n of a polynomial is even(偶),the arms of the graph(圖像的兩(liang) 端)are either both up(a > 0)or down(a < 0);
2.If the degree n of a polynomial is odd(奇),one arm of the graph is up and the other is down:
when a > 0,the right arm of the graph is up
when a < 0,the right arm of the graph is down
評論已經被關(guan) 閉。