Precalculus微積分探索之End behavior of Polynomials

極限是我們(men) 學習(xi) 微積分的重要基礎,今天帶大家學習(xi) 一個(ge) 簡單的概念 — End behavior of polynomials。

首先,來學習(xi) 一下詞匯:

polynomial 多項式

the degree of polynomial多項式的次數

function函數

linear function 一次函數:is of the first degree

quadratic function 二次函數:has degree 2

cubic function 三次函數:has degree 3

constant 常數

coefficient 係數

infinite 無窮

even 偶數

odd 奇數

什麽(me) 是polynomial function?

A polynomial function of degree n can be written in the form:

Precalculus: 微積分探索之End behavior of Polynomials,Precalculus: 微積分探索之End behavior of Polynomials

那麽(me) ,什麽(me) 是End behavior呢?我們(men) 可以理解為(wei) “終端趨勢”,End behavior of polynomials即當x趨向於(yu) 正/負無窮時(positively or negatively infinite),多項式(polynomial)所趨向的值。

先說結論:

Every polynomial whose degree is greater than or equal to 1 becomes infinite (positively or negatively) as x does, depending on the sign of the leading coefficient and the degree of the polynomial.

接下來我們(men) 結合圖像來理解:

1.Quadratic function 二次函數

Precalculus: 微積分探索之End behavior of Polynomials

由圖像可知,當a(leading coefficient)大於(yu) 0時,

x → +∞,y → +∞

x → -∞,y → +∞

當a(leading coefficient)小於(yu) 0時,

x → +∞,y → -∞

x → -∞,y → -∞

2.Cubic function 三次函數

Precalculus: 微積分探索之End behavior of Polynomials

當a(leading coefficient)大於(yu) 0時,

x → +∞,y → +∞

x → -∞,y → -∞

當a(leading coefficient)小於(yu) 0時,

x → +∞,y → -∞

x → -∞,y → +∞

3.Quartic function四次函數

Precalculus: 微積分探索之End behavior of Polynomials

當a(leading coefficient)大於(yu) 0時,

x → +∞,y → +∞

x → -∞,y → +∞

當a(leading coefficient)小於(yu) 0時,

x → +∞,y → -∞

x → -∞,y → -∞

以上我們(men) 不難看出(大家感興(xing) 趣可以畫一下五次函數的圖像),多項式次數(the degree of polynomial) 的奇偶性和首項係數(leading coefficient)的正負決(jue) 定了函數圖像的終端趨勢,我們(men) 可以歸類為(wei) :

1.If the degree n of a polynomial is even(偶),the arms of the graph(圖像的兩(liang) 端)are either both up(a > 0)or down(a < 0);

2.If the degree n of a polynomial is odd(奇),one arm of the graph is up and the other is down:

when a > 0,the right arm of the graph is up

when a < 0,the right arm of the graph is down

【競賽報名/項目谘詢+微信:mollywei007】

上一篇

最好的閱讀與寫作夏校:偉大的書夏校開始報名!

下一篇

雅思和托福到底啥區別?

你也可能喜歡

  • 暫無相關文章!

評論已經被關(guan) 閉。

插入圖片
返回頂部